MMAT5010 Linear Analysis (2024-25): Homework 4 Deadline: 1 Mar 2025

Important Notice:

- \clubsuit The answer paper must be submitted before the deadline.
- \blacklozenge The answer paper MUST BE sent to the CU Blackboard.
 - 1. Suppose that the space \mathbb{R}^2 is endowed with the usual norm, that is $||(x_1, x_2)|| := \sqrt{x_1^2 + x_2^2}$. Let

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix}$$

Find ||A||?

- 2. Let X be a normed space and let $V : X \to X$ be an isometric isomorphism on X, that is T is linear isomorphism and ||Vx|| = ||x|| for all $x \in X$. Show that if $T \in L(X)$, then $||VTV^{-1}|| = ||T||$.
- 3. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$. For each element $(x, y) \in X \oplus Y$, put

 $||(x,y)||_1 := ||x||_X + ||y||_Y.$

Let $T \in L(X)$ and $S \in L(Y)$. Define $T \oplus S : X \oplus Y \to X \oplus Y$ by $(T \oplus S)(x, y) := (Tx, Sy)$. Show that $||T \oplus S|| = \max(||T||, ||S||)$.

*** End ***